DNA repair in Escherichia coli: identification of the uvrD gene product.

نویسندگان

  • V F Maples
  • S R Kushner
چکیده

A 2.9-kilobase (kb) Pvu II DNA fragment that contains the uvrD gene of Escherichia coli K-12 has been cloned in both low-copy and multiple-copy plasmid vehicles. The low-copy uvrD plasmid (pVMK49) complements a variety of uvrD, uvrE, and recL mutations. In contrast, the same strains carrying the 2.9-kb fragment in a multiple-copy plasmid (pVMK45) remain sensitive to ultraviolet light (UV). Additionally, pVMK45 transformants of wild-type E. coli are sensitive to UV and methyl methanesulfonate and appear to be recombination deficient. The cloned uvrD gene does not complement the dominant uvrD3 allele. The 2.9-kb Pvu II insert in these plasmids encodes a single 76,000-dalton protein, which, on the basis of insertional inactivation experiments with the Tn1000 transposon, must be the uvrD gene product. These data confirm earlier genetic analysis which suggested that recL, uvrE, and uvrD were all allelic. The direction of transcription of the uvrD gene has also been determined.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Resolving Holliday junctions with Escherichia coli UvrD helicase.

The Escherichia coli UvrD helicase is known to function in the mismatch repair and nucleotide excision repair pathways and has also been suggested to have roles in recombination and replication restart. The primary intermediate DNA structure in these two processes is the Holliday junction. UvrD has been shown to unwind a variety of substrates including partial duplex DNA, nicked DNA, forked DNA...

متن کامل

UvrD limits the number and intensities of RecA-green fluorescent protein structures in Escherichia coli K-12.

RecA is important for recombination, DNA repair, and SOS induction. In Escherichia coli, RecBCD, RecFOR, and RecJQ prepare DNA substrates onto which RecA binds. UvrD is a 3'-to-5' helicase that participates in methyl-directed mismatch repair and nucleotide excision repair. uvrD deletion mutants are sensitive to UV irradiation, hypermutable, and hyper-rec. In vitro, UvrD can dissociate RecA from...

متن کامل

A point mutation in Escherichia coli DNA helicase II renders the enzyme nonfunctional in two DNA repair pathways. Evidence for initiation of unwinding from a nick in vivo.

Biosynthetic errors and DNA damage introduce mismatches and lesions in DNA that can lead to mutations. These abnormalities are susceptible to correction by a number of DNA repair mechanisms, each of which requires a distinct set of proteins. Escherichia coli DNA helicase II has been demonstrated to function in two DNA repair pathways, methyl-directed mismatch repair and UvrABC-mediated nucleoti...

متن کامل

A Dimer of Escherichia coli UvrD is the active form of the helicase in vitro.

The Escherichia coli UvrD protein is a 3' to 5' SF1 DNA helicase involved in methyl-directed mismatch repair and nucleotide excision repair of DNA. We have characterized in vitro UvrD-catalyzed unwinding of a series of 18 bp duplex DNA substrates with 3' single-stranded DNA (ssDNA) tails ranging in length from two to 40 nt. Single turnover DNA-unwinding experiments were performed using chemical...

متن کامل

Heterodimer formation between Escherichia coli Rep and UvrD proteins.

DNA helicases catalyze the essential process of unwinding duplex DNA to form the single-stranded DNA intermediates required for DNA metabolic processes including replication, recombination, and repair. Most cells, possibly all, encode multiple helicases that function selectively in different processes, although some helicases can complement each other in vivo. Thus, although Escherichia coli ca...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 79 18  شماره 

صفحات  -

تاریخ انتشار 1982